#### About this course

- Medical Microbiology is about microorganisms that cause disease in humans.
  - Concerning the different diseases, you must learn:
    - Biology of the disease agent
    - Pathogenesis
    - Symptoms
    - Treatments
    - Epidemiology
- You will have to learn a new vocabulary
- You will have to be in class to take detailed notes
- Exams questions will be based more on notes than on your book
- The only "dumb" questions are those not asked

# Origin of Species

- Life on Earth is tremendously diverse
- Species is a manmade criterion
- How this diversity arose is the question



## Age of the Earth--Age of Life

- Age of the Earth:
  - 4.5 4.6 Billion years
  - radioactive decay
- Oldest rocks
  - 3.9 Billion years
- Age of Life
  - 700 M, no life
    - cosmic bombardment
    - radioactive short-lived isotopes
    - volcanism
  - 3.5 Billion years ago (life appeared as soon as it could)



Hot and Fiery Beginning

# Ages of Life on Earth

- 5/6 Earth's history was unicellular
- Prokaryotic Life
  - arose 3.5 BYA
  - 1.5 BY, all prokaryote
- Eukaryotic Life
  - arose 2.0 BYA
- Multicellular Life
  - Cambrian Explosion
  - 530 MYA
  - All modern Phyla



#### Classification of Microbes:

- Three Domains of Life:
  - Prokarya
  - Archae
  - Eukarya
    - based on 16s rRNA sequences.
  - Viruses = acellular forms of life; obligate intracellular parasites.



Tree of life illustrates

ton the

## Basic Cell Types:

- Prokaryotes:
- no membrane-bound organelles; simple structure:
  - Bacteria
  - Archae
- Eukaryotes:
- Membrane-bound organelles; complex structure
  - everything other than bacteria
  - Trees, insects, worms, amoebae, humans, etc.

# Today, 13.6 M living species

```
8 M Insects
  1.5 M Fungi
   1.0 M Bacteria
     750 K Arachnids (spiders, etc.)
       400 K Viruses
         320 K Plants
          200 K Protozoa
            200 K Mollusks
              150 K Crustaceans
                50 K Vertebrates
                  250 K Others (Why so Many?)
```

#### Binomial System of Taxonomy

```
Kingdom
       Phylum
             Class
                  Order
                        Family
                              Genus
                                    Species
FOR HUMANS: Animalia
                        Chordata
                              Mammalia
                                    Primates
                                      Hominidae
                                            Homo
                                            Homo sapiens
```

#### Using the Binomial System

Originally 12 Words Now only two This is a species: **Generic** name **Always Capitalized** Homo Specific name Always lower case H. sapiens Always underlined or italicized Homo sapiens



# Examples of species names (always in Latin)

#### They may be descriptive:

Entamoeba histolytica

Named after people:

Eimeria ninakohlyakimovae

Named after places:

Isospora utahensis

Or mixtures:

Yersinia pestis



### Major Groups of Microbes:

- Fungi- Free-living and pathogenic
  - Example of diseases: ring worm, candidiasis
- Algae- Almost all are free-living; no parasites
  - Ex: paralytic shell-fish poisoning
- Protozoa- Free-living and pathogenic
  - Ex: malaria, giardiasis, amebiasis
- Prokaryotes- Free-living and pathogenic
  - Ex: diptheria, TB, whooping cough, tetanus
- Viruses- Obligate intracellular parasites
  - Ex: influenza, polio, measles, mumps, Ebola



#### The Bacteria

- All prokaryotic organisms
- We are outnumbered:
  - we are composed of 10 trillion cells, but we are host on skin, in gut or orifices, to more than 100 trillion bacteria!!
- It is difficult for many to appreciate size and scope of the bacterial world
- Some examples follow:

### Kingdom Monera

- Monera means "alone", or singular
  - Prokaryotes (more later)
- Not primitive, but rather the great success story of biology
  - have been around for 3.5 billion years
    - were alone for 2 billion years
    - changed the Earth significantly
    - created the soil, oxygen atmosphere, recycled life-dependent elements, tremendous genetic diversity
    - These are the bacteria

#### Monera, continued

- Metabolically diverse, but relatively simple in cellular organization
  - Small, lack membrane-bounded organelles, single DNA molecule for genome,
- Dominate the biosphere, outnumbering all Eukaryotes combined,
  - more bacteria on skin than humans have ever lived
  - all other life forms depend on bacteria, and life would rapidly disappear without them
  - only a small minority are associated with disease

### Cellular Anatomy

- A. Shapes and arrangements:
  - 1. Spheres
    - cocci
  - 2. Cylinders
    - bacillus
  - 3. Curved or helic
    - spirilla or spirochetes

Spirochetes





#### The Cell Surface

- Cell envelope:
  - Cytoplasmic membrane- lipid bilayer; barrier
  - Cell wall- support and protection
  - Glycocalyx- protection and attachment; most made of polysaccharide
    - capsule, well organized not easily removed
    - slime layer, zone of diffuse unorganized material, easily washed off
      - aids attachment to surfaces
      - formation of biofilms
      - resists phagocytosis, a virulence factor

### Cytoplasmic membrane:



#### Cellular Anatomy

- Cell walls
  - external to membrane
  - nearly all have CWs
  - offer protection from:
    - osmotic pressure
      - prevents lysis
      - but not plasmolysis
        - preserves, salt & sugar
- Peptidoglycan
  - not cellulose
  - sugar polymers linked by short polypeptides
  - basis for gram stain



N-acetylglucosamine & N-acetylmuramic acid with poly peptide linkages

#### Gram-positive cell walls:

#### Peptidoglycan (POG):

- POG, alternating polysaccharide chains N-acetylglucosamine and N-acetylmuramic acid, linked by short peptides = rigid mesh.
- About 40 layers deep (90% of cell wall)
- Also contain teichoic acids--polymers of glycerol or ribitol and phosphate



**Gram-positive surface components** 

### Gram-negative cell walls:

- multi-layered
  - Composed of a thin POG layer (1-2 layers deep),
  - A periplasmic space
  - Outer lipid membrane
  - Outer-most layer--
  - Lipopolysaccharide (LPS)
    - endotoxin (more later)
    - a sugar-lipid complex



**Gram-negative surface components** 

#### External Appendages:

#### Flagella:

- flagellin protein subunits
- forms a rigid helix
- can vary in placement
  - all around, tuft at each end or one at end

#### Pili:

- pilin protein subunits
- conjugation-genetic exchange=sex pili
- attachment=fimbriae



Flagellar motor

### Cytoplasmic Contents:

- Ribosomes = composed of 2 major subunits; each composed of both RNA and protein.
  - -For Prokarya: 50s + 30s = 70s
  - -For Eukarya: 60s + 40s = 80s
- Nucleoid region = chromosome = 1 circular DNA molecule organized into looped domains.
- Cytoplasmic inclusion:
  - glycogen granules (carbon & energy), gas vacuoles, storage granules, phosphate, nitrogen, etc.

### Bacterial Endospores:

- Found in Bacillus and Clostridium spp
- Extremely dehydrated (<15% water)</li>
- Formed inside the cell ("endospores")
- Proteins extensively crosslinked (S-S)
- Many protective layers of protein
- Almost completely ametabolic
- The most resistant forms of life to environmental factors on the planet



**Endospore within bacterium** 

## A Eukaryotic Cell



# Eukaryotic Cell



