Bacterial Virulence Factors

Bacteria cause disease by generating a bewildering array of factors that allow colonization, and promote bacterial growth at the expense of the host

General Aspects of toxins

- Promote colonization
 - adherence to cells or tissues
 - penetration into host
- Entry into cells (for some bacteria)
 - phagocytic & nonphagocytic cells
- Avoidance of host immune mechanisms
 - variety of mechanisms
- Families of Virulence Factors
 - contain conserved common regions
 - Often variations on a general theme

Microbial Adherence

- Bacterial Colonization
 - a necessary step
- Adhesion Mechanisms
 - Pili adhesion
 - Pilus tip specificity
 - given cell or tissue tropism
 - Type IV, no tip
 - Non-pilus adhesion
 - bind extracellular
 - tissue colonization
 - collagen, fibronectin
 - Gm+ pathogens (Staph & Strep)

Non-pilus binding

Bacterial cell-invasion

- Many intracellular pathogens
 - Salmonella, Listeria, reorganization of Rickettsia, Shigella
- Invasion into nonphagocytes
 - Invasins, direct components of cytoskeleton
 - actin filaments & microtubules
- Avoidance of digestion
 - no lysosome fusion
 - lack of needed ATPase

Adherence, then calcium release actin,

Resulting in

reor surfa arch in E

SALMONELLA

Endotoxin

- Gram--Surface component
 - Lipopolysaccharide(LPS)
 - Lipid A
 - Must be released--cell lysis, cell division
 - binds to macrophages
 - Il-1, TNF
 - fevers, malaise, myalgia, rigors, shock
 - Heat resistant
 - Medical supplies must
 be free of LPS

Gram-negative surface components

Endotoxin and Gram-- bacteria

Exotoxins

- Secreted free from the bacteria
 - Many cause disease without bacteria present
 - bacteremia versus toxemia
- Generally are enzymes or pores
 - promote bacterial colonization or reproduction by providing nutrients
 - allow penetration into cells or tissues
 - some of unknown natural function
- Specific in changing or killing cells
 - enterotoxins, neurotoxins, cytotoxins, etc.
- May potentate other virulence factors

Classical A/B toxins

• B-domain:

- "binding site"
- responsible for cell specificity

• A-domain:

- "active portion"
- alters cell functions
- Cholera & Diphtheria toxin modify host proteins
- Tetanus vrs Botulinum
 - B-domain
 - A-domain

Exotoxins as Pores

Cytotoxins

- similar in AA structure
- different families
- differ in host-cell specificity
 - Hemolysins
 - Leukolysins
 - Neurotoxins
 - Enterotoxins
 - Cytolysins
- Basic structure is conserved among many bacteria spp

Cytolysins are pores inserted into cells

Superantigens

- Poly T-cell stimulation
 - Cross links MHC--II to
 CD4+ heterodimer
 - Cytokine cascade
 - Il-1, TNF-*a*, *et al*.
 - local & systemic
 - circulatory collapse
 - respiratory collapse
 - Shock & death
 - Ex. Staph TSST-1

No specific antigen involved

Immune Avoidance

Cloaking devises

- collecting a surface coat:fibronectin, albumin, etc.
- Capsules: protect from:
 - --Complement, Antibody, phagocytosis

Anti-immunity factors

- IgAase,
- Protein A,
- Complement degradation antibodies
- Antigenic variation
 - Neisseria >50 pilus genes
 - genetic switching of surface components

Degradation of complement or

Secreted surface capsules

Binding of host proteins such as fibronectin