Clostridium spp, the Strict Anaerobes

Over 90 different species, all are anaerobic spore formers, but less than 20 are associated with human disease

Biology of Clostridium spp

- Gram +, with ultra-cell wall structure, variable
 Gram stain
- Ubiquitous in environment
 - In soil, decaying vegetation, ocean sediment, GI tract of humans & animals
 - especially in fecalcontaminated soil

- Many human infections are endogenous, from normal flora
 - diseases produced by classical A/B toxins
 - also hemolysins, neuraminidase, enterotoxins, etc
 - tetanus, gas gangrene, food poising, and botulism, colitis, etc.

Clostridium tetani

- Gm+ obligate anaerobic bacillus
- Disease described by Egyptians & Greeks
 - associated with wounds followed by lethal spasms
- Looks like tennis racket or drumstick
 - spores highly resistant and long-lived

Electron micrograph of endospore

Epidemiology of Tetanus

- Ubiquitous soil microbe
 - especially fecalcontaminated soils
- Low in USA, High in developing world
 - DPT vaccine
 - a toxoid vaccine
 - Neonatal tetanus
 - common in 3rd World
 - acute injuries
 - some cryptogenic infections

Figure 18-3 Reported cases of tetanus by year in the U.S., 1955 to 1994.

Pathogenesis of Tetanus

- Tetanospasmin, the Tetanus toxin
 - 4-10 days post exposure
 - plasmid encoded
 - classical A/B toxin
 - A=presynaptic inhibition of Glycine
 - B= spinal cord and brainstem neurons

Mode of Action of Tetanus toxin

Clinical features

- 4 distinct clinical types
 - generalized
 - most common
 - begins with masseter muscles (lock-jaw)
 - Opisthotonus posturing
 - takes two weeks
 - localized
 - near wound
 - mild to persistent
 - maybe due to partial immunity
 - cephalic
 - local paralysis of facial nerves & muscles
 - neonatal-90% mortality
 - rigidity, failure to nurse

Opisthotonus posturing

Advanced Tetanus: a British Soldier

Neonatal Tetanus

- Rare in USA
- Common in 3rd World
 - lack of maternal immunity
 - poor hygienic conditions at delivery
 - rubbing dirt into
 umbilicus to stop
 bleeding (bad idea)
 - Weakness, failure to nurse, highly fatal

Neonatal Tetanus

Clostridium botulinum

- Botulism is not an infection, but the effects of the toxin can be catastrophic
- Botulinum toxin is the most potent known
 - 1 mg can kill 1 million guinea pigs!!!
 - Major biological warfare agent
- "botulinum" means sausage, because--
- Disease generally acquired from improperly processed foods-sausage, fish, etc.
 - generally non-acidic meats & vegetables
 - pressure cooking versus hot packing

Botulism

- More common in developed countries
 - USA, Canada, Japan,
 Germany, Poland, etc.
 - 124 cases in USA,1976-84
- Spores very stable to boiling
- Toxin is heat labile
- Mode of action:
 - A portion: inhibits
 release of acetylcholine
 - B portion: peripheral motor-neural junctions

Mode of action of botulinum toxin

• Toxin causes "flaccid features

- paralysis"
 - weakness of cranial nerves, limbs & trunk
 - blurred vision
 - dysphagia (can't swallow)
 - respiratory embarrassment (1° cause of death)
- Diagnosis--inject plasma into mice
- Treatment:
 - horse antiserum
 - respiratory support

Diagnosis of botulinal toxin

Clostridium perfringens

- Gas gangrene AKA
 Clostridial myonecrosis
- Also food poisoning
- Tissue damage filled with gas
 - due to potent enzymes
- C. perfringens from all soil except Sahara also in all feces & vagina**
 - 80% *C.p*, also *C.* septicum, et al.**
 - tissue damageaccelerated bydamaged circulation
 - diabetes mellitus, etc.

- 12 toxic enzymes:
 - Alpha-toxin, a
 lecithinase, cytolysins,
 neuraminidase, etc.
 kill many cell types
- Gas production due to fermentation of muscle carbohydrates and AAs to CO₂ & H₂
 - Pressure-induced ischemia

• Common in:

- traumatic injury--bleeding*
- penetrating wounds--soil*
- circulation insufficiency
- colorectal, et al. cancers
- self-induced abortions**

Clinical Features

- Short incubation 1-4 d.
- Sudden & severe pain
- pressure near wound
- edema of limb
 - pale then bronze color
 - discharge with sweet mousy odor
 - gas in tissues
 - tachycardia
 - fever & hypotension
 - renal failure
 - hemoglobinuria
 - comatose before death

CT scan of thighs, gas spaces on right leg

Clinical Features continued

Surgery

- Requires rapid and thorough debulking of affected tissues
 - systemic *a*-toxin**
- Myonecrosis, no electrical stimulation of muscle
- no bleeding of cut surface

• Further treatment:

- Penicillin G may improve survival, but*

 Amputations
 required
- Hyperbaric oxygen therapy of ?usefulness

Clostridium difficile

- Pseudomembranous colitis
 - serious, potentially fatal infection
 - intestinal overgrowth
 - endogenous infection
 - excess antibiotic use (AAPC)
 - ampicillin, clindamycin cephalosporins, etc.
 - debilitated persons, cancer, intensive-care patients, burn patients etc.

- Toxins
 - Toxin A: enterotoxin
 - induces alterations in liquid adsorption leading to severe diarrhea,
 - induces granulocyte tropism=inflammation
 - Toxin B: cytolysin
 - damages the lining of intestine leading to tissue necrosis and pseudomembrane formation

• Life-threatening Clinical features

diarrhea

develops during original treatment

- Patients remain severely ill after--
- Mucosae highly inflamed, ulcerated, necrotic
- Endoscopy--shaggy yellow & white exudate of dead tissue
- Difficult to treat requiring specific antibiotics
 - maintain electrolytes,
 - Vancomycin,bacitracin andmetronidazole

Other Anaerobes

- *C. perfringens* is also associated with food poisoning, especially sausages and other meats
- Many endogenous anaerobes also colonize other tissues and cause disease of the liver, kidney, heart, CNS, etc.
- Perforated colon (*Bacteroides* spp)
- Aspiration pneumonia
- However, one area of universal concern is the role they play in dental health--dental caries and periodontal disease---

Biologic Aspects of Biofilms

- Slime or the Single cell?
 - Past views--single life
 - current thinking
- Development of biofilms
 - attachment
 - quorum sensing
 - cell-to-cell chatter
 - alginate matrix
 - complex structures
 - aerobic/anaerobic
 - shedding of cells

Biofilm from contact lens storage case

K Acanthamoeba, and bacterial biofilm

The Life Cycle of a Biofilm Variety of **Protection from** Cells released from

niches formed

antibiotics & toxins

slime

Consequences of biofilms

- ruminant nutrition
- antibiotic resistance
- antibody
- virulence factors
 - quorum sensing
- recurrent infections
- dental pathogens
- medical prostheses
 - heart valves, etc
 - contact lenses
- community water supplies

Biofilm on medical prosthesis

Diseases and biofilms

To date:

- Corneal necrosis from contact lenses
- periodontal disease
- prostrate infections
- kidney stones
- TB
- Legionnaire's disease
- middle ear infections
- cystic fibrosis pneumonitis

Corneal necro in cor

Biofilm of V. cholerae, 40X resistant to Cl

Dental Pathogens

- Odontopathogens induce dental disease,
 both caries and periodontal disease
- These form part of the normal endogenous flora and are not generally transmitted from person to person.
- Often the most important contributors to dental disease are anaerobes

• Teeth have natural Dental structure defenses against caries

- enamel adsorbs mucins
 - forming the negatively charged enamel pellicle
- Streptococcus & Actinomycetes spp have tissue receptors, and adhere to teeth
- layered symbiotic colonies form plaque, a typical biofilm
- glucan from sugars cements the biofilm, breaking down the natural defenses

Dental Plaque & Caries

- Colonization requires bacteria to adhere to dental surfaces
- Streptococci & other spp. have specific fimbriae to attach to dental surfaces-resisting the scrubbing& flushing action of food & saliva
- Plaque is a symbiotic biofilm requiring several spp of bacteria

- Plaque is the most concentrated collection of bacteria in the body (> 100 billion per gram)
 - Streptococcus mutans
 et al. produce acids
 (lactic, formic and acetic)from sugars
 - acids demineralize the enamel, forming caries
 - fluoride prevents this and helps with remineralization

Dental Caries and the role of Fluoride

Normal Conditions

Cavity-Forming Conditions

Remineralizing Therapies

Periodontal disease

- Peridontium— the supporting structure of teeth
 - gingivae, cementum,
 periodontal membrane, &
 bones of the jaw
 - Subgingival plaque
 - low O2 allows colonization of anaerobes: *Bacteroides*, and other anaerobs, causing inflammation & tissue necrosis leading to Periodontal Disease
 - The leading cause of bone damage & tooth loss in adults

Foundations of Microbiology, 2nd ed., by Talaro & Talaro, ⊚1996 Times Mirror Higher Education Group, Inc.

Stages in Soft-Tissue Infection and Gingivitis. Figure 21.32a-c (T)

Fig. 15.11 Severe periodontal disease (adult periodontitis) in a 30-year-old male. Note the gingival swelling and detachment overlying probable extensive loss of alveolar bone.