Clostridium spp, the Strict Anaerobes

Over 90 different species, all are anaerobic spore formers, but less than 20 are associated with human disease
Biology of *Clostridium* spp

- Gram +, with ultra-cell wall structure, variable Gram stain
- Ubiquitous in environment
 - In soil, decaying vegetation, ocean sediment, GI tract of humans & animals
 - especially in fecal-contaminated soil
- Many human infections are endogenous, from normal flora
 - diseases produced by classical A/B toxins
 - also hemolysins, neuraminidase, enterotoxins, etc
 - tetanus, gas gangrene, food poisoning, and botulism, colitis, etc.
Clostridium tetani

- Gm+ obligate anaerobic bacillus
- Disease described by Egyptians & Greeks
 - associated with wounds followed by lethal spasms
- Looks like tennis racket or drumstick
 - spores highly resistant and long-lived

C. tetani with endospores

Electron micrograph of endospore
Epidemiology of Tetanus

- Ubiquitous soil microbe
 - especially fecal-contaminated soils
- Low in USA, High in developing world
 - DPT vaccine
 - a toxoid vaccine
 - Neonatal tetanus
 - common in 3rd World
 - acute injuries
 - some cryptogenic infections
Pathogenesis of Tetanus

- **Tetanospasmin**, the Tetanus toxin
 - 4-10 days post exposure
 - plasmid encoded
 - classical A/B toxin
 - A= presynaptic inhibition of Glycine
 - B= spinal cord and brainstem neurons

Mode of Action of Tetanus toxin

- Relaxation signal from central nervous system
- Motor nerve
- Muscle fibers
- Tetanus toxin (blocks release of glycine, inhibiting relaxation)
- Glycine (G) induces relaxation and elongation of muscle fibers
Clinical features

• 4 distinct clinical types
 – generalized
 • most common
 • begins with masseter muscles (lock-jaw)
 • Opisthotonus posturing
 • takes two weeks
 – localized
 • near wound
 • mild to persistent
 • maybe due to partial immunity
 – cephalic
 • local paralysis of facial nerves & muscles
 – neonatal-90% mortality
 • rigidity, failure to nurse
Advanced Tetanus: a British Soldier

Opisthotonus posturing
Neonatal Tetanus

- Rare in USA
- Common in 3rd World
 - lack of maternal immunity
 - poor hygienic conditions at delivery
 - rubbing dirt into umbilicus to stop bleeding (bad idea)
 - Weakness, failure to nurse, highly fatal
Clostridium botulinum

- **Botulism** is not an infection, but the effects of the toxin can be catastrophic
- Botulinum toxin is the most potent known
 - 1 mg can kill 1 million guinea pigs!!!
 - Major biological warfare agent
- “botulinum” means sausage, because--
- Disease generally acquired from improperly processed foods—sausage, fish, etc.
 - generally non-acidic meats & vegetables
 - pressure cooking versus hot packing
Botulism

- More common in developed countries
 - USA, Canada, Japan, Germany, Poland, etc.
 - 124 cases in USA, 1976-84
- Spores very stable to boiling
- Toxin is heat labile
- Mode of action:
 - **A portion**: inhibits release of acetylcholine
 - **B portion**: peripheral motor-neural junctions

Mode of action of botulinum toxin
Clinical features

- Toxin causes “flaccid paralysis”
 - weakness of cranial nerves, limbs & trunk
 - blurred vision
 - dysphagia (can’t swallow)
 - respiratory embarrassment (1º cause of death)
- Diagnosis--inject plasma into mice
- Treatment:
 - horse antiserum
 - respiratory support
Clostridium perfringens

- Gas gangrene AKA **Clostridial myonecrosis**
- Also food poisoning
- Tissue damage filled with gas
 - due to potent enzymes
- *C. perfringens* from all soil except Sahara also in all feces & vagina**
 - 80% *C.p*, also *C. septicum, et al.***
 - tissue damage accelerated by damaged circulation
 - diabetes mellitus, etc.

- 12 toxic enzymes:
 - Alpha-toxin, a lecithinase, cytolysins, neuraminidase, etc. kill many cell types

- Gas production due to fermentation of muscle carbohydrates and AAs to CO₂ & H₂
 - Pressure-induced ischemia

- Common in:
 - traumatic injury--bleeding*
 - penetrating wounds--soil*
 - circulation insufficiency
 - colorectal, et al. cancers
 - self-induced abortions**
Clinical Features

- Short incubation 1-4 d.
- Sudden & severe pain
- Pressure near wound
- Edema of limb
 - Pale then bronze color
 - Discharge with sweet mousy odor
 - Gas in tissues
 - Tachycardia
 - Fever & hypotension
 - Renal failure
 - Hemoglobinuria
 - Comatose before death

CT scan of thighs, gas spaces on right leg
Clinical Features continued

- **Surgery**
 - Requires rapid and thorough debulking of affected tissues
 - systemic α-toxin**
 - Myonecrosis, no electrical stimulation of muscle
 - no bleeding of cut surface
- **Further treatment:**
 - Penicillin G may improve survival, but*
 - Hyperbaric oxygen therapy of usefulness

Gangrene from frost-bite
Amputations required
Gangrene from drug use
(why drug use?)

Debulking removed dead tissue to stop decay

After skin graphing

Clostridium difficile

- **Pseudomembranous colitis**
 - serious, potentially fatal infection
 - intestinal overgrowth
 - endogenous infection
 - excess antibiotic use (AAPC)
 - ampicillin, clindamycin, cephalosporins, etc.
 - debilitated persons, cancer, intensive-care patients, burn patients etc.

- **Toxins**
 - **Toxin A: enterotoxin**
 - induces alterations in liquid adsorption leading to severe diarrhea,
 - induces granulocyte tropism=inflammation
 - **Toxin B: cytolysin**
 - damages the lining of intestine leading to tissue necrosis and pseudomembrane formation
Clinical features

- Life-threatening diarrhea
 - develops during original treatment
- Patients remain severely ill after--
- Mucosae highly inflamed, ulcerated, necrotic
- Endoscopy--shaggy yellow & white exudate of dead tissue
- Difficult to treat requiring specific antibiotics
 - maintain electrolytes,
 - Vancomycin, bacitracin and metronidazole
Other Anaerobes

- *C. perfringens* is also associated with food poisoning, especially sausages and other meats.
- Many endogenous anaerobes also colonize other tissues and cause disease of the liver, kidney, heart, CNS, etc.
- Perforated colon (*Bacteroides* spp)
- Aspiration pneumonia
- However, one area of universal concern is the role they play in dental health--dental caries and periodontal disease---
Biologic Aspects of Biofilms

- **Slime or the Single cell?**
 - Past views--single life
 - current thinking
- **Development of biofilms**
 - attachment
 - quorum sensing
 - cell-to-cell chatter
 - alginate matrix
 - complex structures
 - aerobic/anaerobic
 - shedding of cells

Biofilm from contact lens storage case

* Acanthamoeba, and bacterial biofilm
The Life Cycle of a Biofilm

- Variety of niches formed
- Protection from antibiotics & toxins
- Cells released from slime
Consequences of biofilms

- ruminant nutrition
- antibiotic resistance
- antibody
- virulence factors
 - quorum sensing
- recurrent infections
- dental pathogens
- medical prostheses
 - heart valves, etc
 - contact lenses
- community water supplies

Biofilm on medical prosthesis
Diseases and biofilms

- To date:
 - Corneal necrosis from contact lenses
 - Periodontal disease
 - Prostate infections
 - Kidney stones
 - TB
 - Legionnaire’s disease
 - Middle ear infections
 - Cystic fibrosis pneumonitis

Biofilm of *V. cholerae*, 40X resistant to Cl⁻
Dental Pathogens

• Odontopathogens induce dental disease, both caries and periodontal disease
• These form part of the normal endogenous flora and are not generally transmitted from person to person.
• Often the most important contributors to dental disease are anaerobes
Dental structure

- Teeth have natural defenses against caries
 - enamel adsorbs mucins
 - forming the negatively charged enamel pellicle
 - *Streptococcus* & *Actinomycetes* spp have tissue receptors, and adhere to teeth
 - layered symbiotic colonies form **plaque**, a typical biofilm
 - glucan from sugars cements the biofilm, breaking down the natural defenses
Dental Plaque & Caries

- Colonization requires bacteria to adhere to dental surfaces
- *Streptococci* & other spp. have specific fimbriae to attach to dental surfaces—resisting the scrubbing & flushing action of food & saliva
- Plaque is a symbiotic biofilm requiring several spp of bacteria

- Plaque is the most concentrated collection of bacteria in the body (> 100 billion per gram)
 - *Streptococcus mutans* et al. produce acids (lactic, formic and acetic) from sugars
 - acids demineralize the enamel, forming caries

- fluoride prevents this and helps with remineralization
Dental Caries and the role of Fluoride

Normal Conditions

Cavity-Forming Conditions

Remineralizing Therapies
• **Peridontium**—the supporting structure of teeth
 - gingivae, cementum, periodontal membrane, & bones of the jaw
 - **Subgingival plaque**
 - low O2 allows colonization of anaerobes: *Bacteroides*, and other anaerobs, causing inflammation & tissue necrosis leading to **Periodontal Disease**
 - The leading cause of bone damage & tooth loss in adults

Fig. 15.11 Severe periodontal disease (adult periodontitis) in a 30-year-old male. Note the gingival swelling and detachment overlying probable extensive loss of alveolar bone.