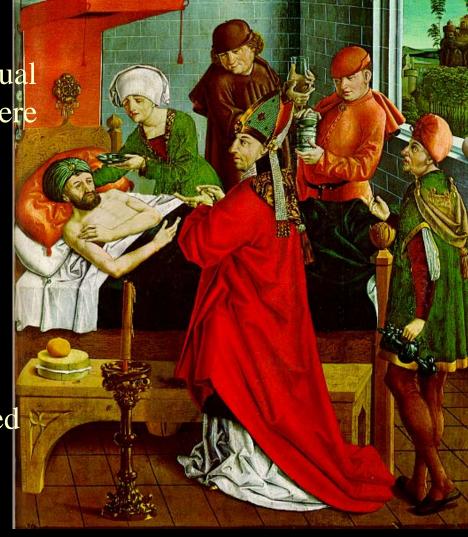
Immunology


Recognition and Response

Immunology, before the germ theory of disease

 Disease was believed to have a spiritual cause, thus cures and treatments were also spiritual

•During the Plague of Athens, 430 BC becoming immune after exposure was recognized

• The idea that diseases were caused by living things led to new ideas about treatment and prevention

Bishop healing a disease

Historical Perspective

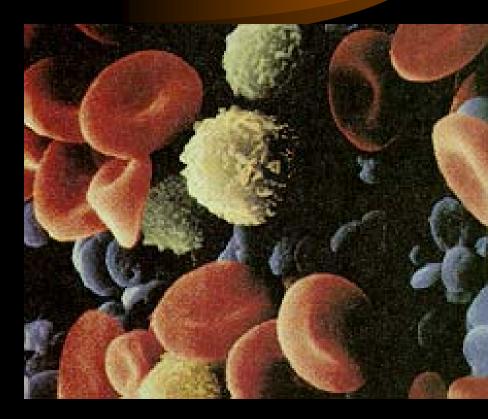
- Immunis Latin for exempt
- Ancients recognized
- Process of variolation
- Edward Jenner and small pox-1798

Jenner vaccinating

Vaccination

- Vaccine from "vacca" from Latin for cow
- L. Pasteur's work on rabies
 - Joseph Meister
- Vaccination was not accepted at first
- Mechanisms discussed below

Discovery of mechanisms of immunity


- Emile Von Behring 1890- humoral 1901-Nobel Prize
- Elie Metchnikoff 1883, cellular 1908-Nobel Prize
- Humoral or Cellular?
 Until 1950s unsettled

Elie Metchnikoff

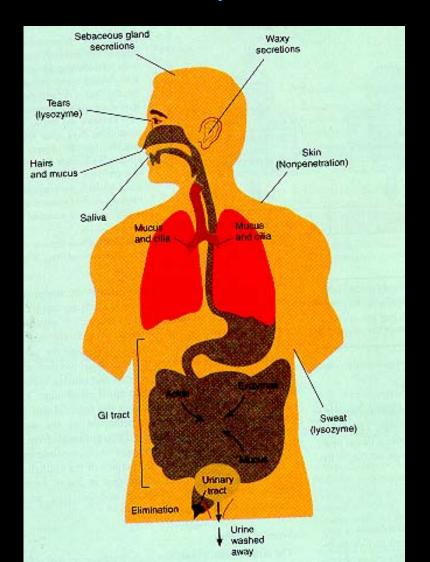
Innate (nonspecific) immunity

- 4 Barriers to infection:
 - -Anatomic
 - -Physiologic
 - -Endocytic
 - -Inflammatory
- Innate immunity cannot be "boosted"

RBCs, Leukocytes, platelets

Anatomic barriers to infection, Skin

• Skin has 2 layers:


- Epidermis
 - dead at maturation
 - no blood vessels
 - frequent desquamation
 - dry, salty, acidic, sebum
 - Normal flora
- Dermis
 - rich in blood vessels
 - macrophages, etc.
 - sebaceous glands

Skin with 2 layers

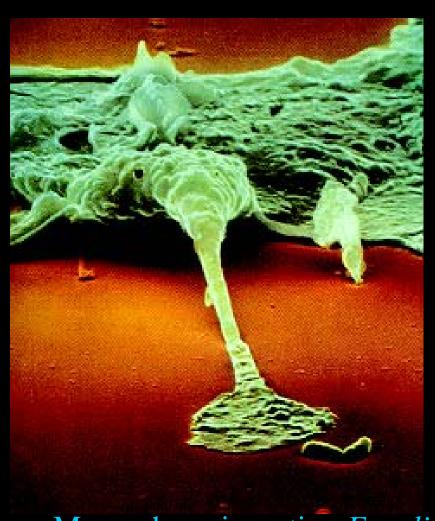
Other anatomic barriers to infection The body is a donut

- GI tract
 - Body as a donut
 - Mouth
 - Stomach
 - Normal flora
 - Small intestine
 - Large intestine

Respiratory Tract

- Aerosolization
 - Air is generally clean
 - Molds, spores, etc, rare
 - Droplet dissemination
 - Sneezing, coughing
- Role of mucus (rhinitis)
- Role of cilia
 - (ciliary escalator)
- Alveolar macrophages

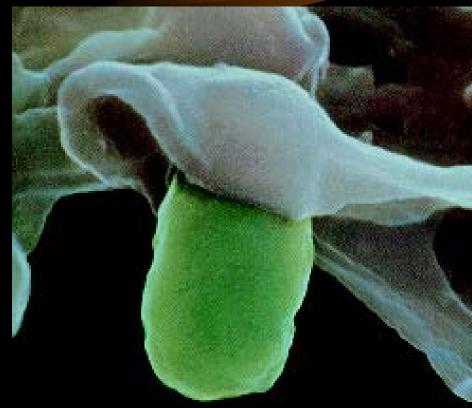
Coughing accelerates aerosolization


Bronchial cilia

Uro-genital Tract

- Initial 1/3 generally not sterile
 - Role of urine, flushing action, pH
- The male: Infections less common
 - BPH (Benign prostrate hyperplasia)
- The female: Infections more common
 - Architectural issues
 - Normal flora, pH, cervical plug
 - PID (Pelvic Inflammatory Disease)
- Other Body Openings
 - Eyes and ears

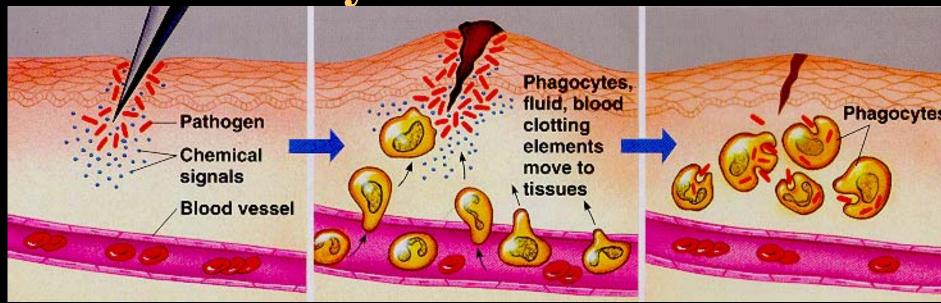
Physiologic barriers to infection


- Phagocytic, endocytic
 - ingestion of microbes
 - monocytes
 - macrophages
 - neutrophils
 - eosinophils-less active
- Soluble factors:
 - lysozyme, interferon, complement
- Others: temp, pH,
 - O_2 tension

Macrophage ingesting E. coli

Inflammation

- "setting on fire"
- recognized by 1600BC
- Celus, Roman MD
- "rubor et tumor cum calore et dolore"
 - KNOW HOW TOTRANSLATE THIS -



Phagocyte ingesting bacterium

Events in Inflammation

- Mediators of inflammation
 - Cellular injury induces various cells (macrophages, PMNs, endothelial cells, etc) to release mediators of inflammation
 - Prostaglandins, histamines, cytokines, etc.
- Early inflammatory events:
 - Vasodilatation: increased blood flow (rubor, calor)
 - Marginalization and diapedesis (tumor)
 - Exudate = edema (tumor)
- Enhanced pain reception (dolore)
- Late inflammatory events:
 - Macrophage clearance of dead cells and microorganisms
 - Tissue repair by fibroblasts result in scars or granulomas
- Prolonged inflammation is generally pathogenic

Summary of Inflammation

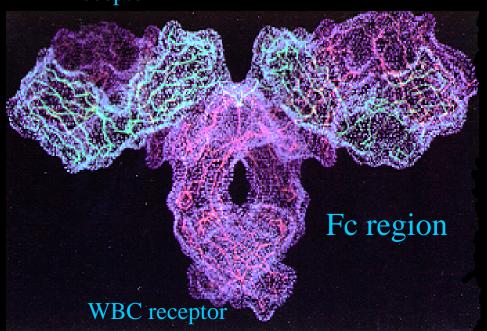
- •Injury to tissues releases mediators of inflammation, cytokines,
- •histamine, and prostaglandins (PGE2)
- •Vasodilation, increased blood flow (rubor, calore)
- Increased capillary permeability with outflow of fluids and cells resulting in edema (fluids) and diapedesis (cells) in tissues (*tumor*)
- •Release of bradykinin & PGE2, upregulate pain receptors (dolore)
- •Chemotaxis is the attraction of inflammatory cells to injury
- •Tissue repair, scarring, and granulomas

Impact of systemic inflammation

- •Fevers result from systemic inflammation
 - -Hypothalamus-controls body temperature
 - -Prostaglandins
 - -Leukocytes release pyrogenic cytokines: IL-1, IL-6, TNF
 - -KNOW HOW THEY WORK
 - -what about aspirin, etc.
 - -What about cold symptoms?
 - -Anaphylaxis?

Malaria as Ague and Fever

Specific Immunity

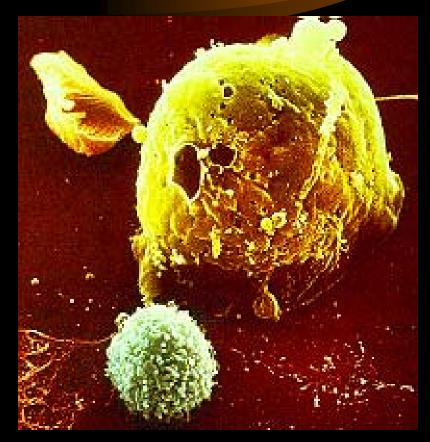

- The seminal event of specific immunity is immunologic memory
- Primary immune response
 - 7-12 days after exposure
 - Sets up antibody and cytotoxic cellular reactants and memory mechanisms
- Secondary immune responses
 - Results from memory mechanisms
 - Rapid response, 3-4 days, generally symptomless

Humoral Immunity

- Antibody is produced by <u>Plasma cells</u> (B-cells)
- IgM, first to appear,
 - a pentamer
- IgG, most important,
 - crosses placenta
- IgA, secretory antibdy
 - in gut, in milk, a dimer
- IgE, parasites & allergies
 - receptor for mast cells, basophils, eosinophils

Antigen-specific receptor

Fab region


Antibody molecule

CD4+, T-Helper cells

- T-Lymphocytes, the major players in Cell-Mediated-Immunity (the CMI)
- Primarily are cytokine secretor cells
 - •Their secreted cytokines, the interleukins:
 - Control production of antibodies
 - •Stimulate macrophage activities
 - •Produce some antimicrobial agents
 - up-regulation and down-regulation of immune responses
 - maturation of CD8+ cells to Cytotoxic lymphocytes

CD8+, cell-mediated immunity

- CD8+
- generally do not produce cytokines
- Cytotoxic Killer cells
 - antigen specific Ctls
 - effective against :
 - intracellular pathogens
 - TB, viruses, etc.
 - cancer cells
 - tissue graft rejection

Ctl lysis of Cancer cell

Active and Passive immunity

Transplacental passive immunity

- Active immunity
 - pathogen exposure
 - vaccination
- Passive immunity
 - Gamma globulin
 - Transplacental
 - IgG
 - Breast feeding
 - IgA